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RADIATION FROM YARMONIC SOURCES IN 
A UNIFORMLY MOVING MEDIUM 

I, INTRODUCTION 

The problem of the electrodynamics of moving media w a s  first 
solved exactly by Minkowski[ 11 in 1908, and an excellent discussion 
of his work has beerr given by Sommerfeld[ 21. Recently, a review of 
Minkowski's theory and a discussion of several current 
this subject have been given by Tai[ 31. 

In this report, Minkowski's results a r e  used to find ;general 
integral for the field equations in a moving medium. The medium is 
assumed to be homogeneous, isotropic, and to move with a constant 
velocity much less than the speed of light, inside a certain volume of 
space. Only time harmonic fields a r e  considered. A wave equation 
for the electric field is derived and is integrated by means of a 
Green's Identity and an appropriately defined Dyadic Green's Function. 
The result gives the electric field inside the volume in terms of known 
sources in the volume and the tangential components of the electric and 
magnetic fields over the enclosing surface. 
by a point dipole in an infinite moving medium a r e  found. 

Finally, the fields radiated 

11. INTEGRATION OF THE FIELD EQUATIONS 

.Consider a homogeneous and isotropic medium of permittivity E 
and permeability p . 
city with respect to an inertial xyz-coordinate system. 
dition that the velocity of the medium is much less than the velocity of 
light, the electromagnetic fields, as measured in the xyz-frame, a r e  
governed by the equations [ 41 

Assume the medium is moving with constant velo- 
Under the con- 

a -  
a t  

- 
V X E= -- [.I. H-(cp - E & ~ ) ;  X 1 (1) 

a - 
V X H =  - [ C E + ( E ~ - E ~ ~ ~ ) V X T I ]  +'5 a t  (2 )  
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where 

-- 
E, H = the electric and magnetic fields, 
E o ,  po = the permittivity and permeability of free-space, 

= the source volume current density. 
- and 
J 

W e  consider in this report only the case where all field quantities vary 
sinusoidally with time. 
Eqs. (1) and (2) take the form: 

The factor e+jot may then be suppressed and 

(3)  

- *  
where ois the radian frequency. Also, we define the vector A , 

and wr i te  Eqs. (3) and (4) as 

c 

Corr-Jining Eqs. (6) and (7) yields the ,allowing wave equation for E 

- - 
where k = o F  Assuming J to  be known, a solution for E is sought. 

8 We choose the symbol 
has dimensions of reciprocal velocity. 

(an upside-down "V'I) because this quantity 
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Equation ( 8 )  may be integrated by the use of a Dyadic Green's 
Function defined by the equation 

(9)  

-- - - 
where E is the idemfactor and 6 ( IR-R' ) )  is the Dirac Delta Function. 
It may be remarked that the components of correspond to the fields 
resulting from a source radiating in a medium moving with velocity 
-v. A solution for Eq, (9) is obtained below. 
- 

Equation (9) may be used to solve ECJ (8) by means of a suitable 
Green's Identity, as follows. Let 
continuous second derivatives at all points of a certain volume of space 
V. Define the vector as  

and Q be two vector fields with 

Then it is easily verified that 

and hence from the Divergence Theorem applied to the volume V 

A where S is a regular surface bounding the volume V and n is an outward 
directed normal to S. By arranging Eq. (12) so 
combination of vectors and setting 

appears last in each 
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- 
(14) Q = E  

- - 
where a is an arbitrary constant vector, it is found that a may be re-  
moved from the equation and the following identity for the vector- 
dyadic mixture results: 

JJ 
S 

Finallv, substituting Eqs. (6), (8) and (9) yields the general solution 
for E 

s 

by which the electric field inside an arbitrary volume may be calculated 
from the sources within the volume and the tangential fields on the sur -  
face. ' Equation (16) is a mathematical statement of Huygen's Principle 
as applied to moving media. 

IIL THE DYADIC GREEN' S FUNCTION 

A direct method of obtaining the solution for Eq. (9)  is to make 
the assumption t h a t T m a y  be written as  the product of a scalar function 
4 and another dyadic 7 

where $ is to be chosen to simplify Eq. (9). From the identity 

16 91- 9 4 
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it is seen that i f  is chosen to satisfy the differential equation 

then Eq. (18) gives the simple formula 

and also 

Hence for such a +, Eq. (9) reduces to 

which has the same form as the equation for the free-space Dyadic 
Green's Function. 

re 

When the velocity of the medium is zero, the dyadic T must reduce 
to the free-space Dyadic Green's Function (with the propagation constant 
k = w\IF7' replacing the free-space propagation constant ko = qgo). 
Hence it may be seen from Eq. (22) that when the velocity is zero, + 
must be unity. Therefore, the solution to Eq. (19) is 

and Eq. (22) becomes 

1691-9 5 
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The last equality in Eq. (24)  follows from the property of the Dirac 
Delta Function. 
the known solution for  the free-space Dyadic Green's Function, 

The solution for f may be written down at once from 

- -- - 
and then from Eq. (17) the solution for  T(RI R') is 

- -- - 
As mentioned above, T(R[ R') reduces to  the free-space Dyadic Green's 
Function when the velocity of the medium is zero. 

Equations (16) and (26) comprise the general solution for the 
radiation of harmonic sources in a uniformly moving medium. 
though it is perhaps obvious, it is worth pointing out that in using Eq. 
( 2 6 )  in Eq. (16), one must pay careful attention to the pr imecand un- 

changes when the roles of R and R' a r e  interchanged. 
section, the radiation properties of an infinitesimal electric dipole a r e  
examined. 

Al- 

primed coordinates, sinceAhe sign of the phase constant e'J 'UA .(K-R) 
In the next 

IV. THE INFINITESTIMAL ELECTRIC DIPOLE 

Consider an electric dipole of vanishingly small dimensions and 
With the dipole located at the coordinate origin of dipole moment po. 

and oriented in the z-direction, the source current density is 

Assuming the dipole radiates into an infinite medium, only the volume 
integral in Eq. (16) is needed. 
easily done and gives for the 8-component of the electric field 

For  this source, the volume integral is 

1691-9 6 
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(28 )  - E6 = - d p p 0  -1  s i n 6 e  t j w x - i i  e 
41r R 

which reduces to 

-jkR - -  
1 t j d  R sin 8 e Eo = - - w2pp0 e 
41r R 

(29) 

in the far-field. With no loss of generality, we 

A r =  A x + A  
X z (30)  

and then substituting for the unit vectors gives 

may let 

The magnetic field associated with Eq. (29) may be calculated from 

When this expression is applied to Eq. (29) it is found that the radial 
components of V x F and - j w n  x E cancel out, leaving only a +-corn- 
ponent of H given by 

where '1 is the characteristic impedance of the medium. 

Thus it is seen that the effect of the velocity of the medium is to 
change t h e  propagation constant in the medium, because of the factor 
e+jwA*R . SinceA is a constant vector, the phase constant for the 
medium wi l l  be larger than k in one-half the space and smaller in the 
other half. To compute the total power radiated by the dipole, the quantity 
1/2 Eo %*( the asterick denotes the complex conjugate) may be integrated 
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- -  
over the surface of a shpere. However, since* the phase term e +jwA * R  
will  not appear in the product 
radiated by the dipole and hence its radiation resistance a re  unaffected 
by the velocity of the medium. 
dipole does not depend on the velocity. 

* , it is seen that the total power 

Also. the radiation "pattern" of the 

V. CONCLUSIONS 

The wave equation for the electric field in a uniformly moving 
medium has been derived and a Green's Identity suitable for integrating 
the wave equation has been found. Also, the equation for  the appropriate 
Dyadic Green's Function has been solved. 
Function was  found to differ from that of the free-space Green's Function 
only by an additional phase factor e-jaKjK'R'). 
(16)  along with Eq. (26) for the Dyadic Green's Function give the general 
solution fo r  the electric field inside a volume of space in terms of sources 
within the volume and tangential fields on the surface of the volume. 

The form of the Green's 

The integral in Eq, 

Also, the radiation properties of a point dipole were examined. 
It was found that the radiated power, radiation resistance, and ''pattern" 
of the dipole were all unaffected by the motion of the medium. 
phase velocity was affected, its value being larger than the corresponding 
value for a stationary medium in one-half of space and smaller in the 
other half. 

Only the 
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